1,270 research outputs found

    Characterization of the size and position of electron-hole puddles at a graphene p-n junction

    Full text link
    The effect of an electron-hole puddle on the electrical transport when governed by snake states in a bipolar graphene structure is investigated. Using numerical simulations we show that information on the size and position of the electron-hole puddle can be obtained using the dependence of the conductance on magnetic field and electron density of the gated region. The presence of the scatterer disrupts snake state transport which alters the conduction pattern. We obtain a simple analytical formula that connects the position of the electron-hole puddle with features observed in the conductance. Size of the electron-hole puddle is estimated from the magnetic field and gate potential that maximizes the effect of the puddle on the electrical transport.Comment: This is an author-created, un-copyedited version of an article published in Nanotechnology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.1088/0957-4484/27/10/10520

    Bilayer graphene Hall bar with a pn-junction

    Full text link
    We investigate the magnetic field dependence of the Hall and the bend resistances for a ballistic Hall bar structure containing a pn-junction sculptured from a bilayer of graphene. The electric response is obtained using the billiard model and we investigate the cases of bilayer graphene with and without a band gap. Two different conduction regimes are possible: ii) both sides of the junction have the same carrier type, and iiii) one side of the junction is n-type while the other one is p-type. The first case shows Hall plateau-like features in the Hall resistance that fade away as the band gap opens. The second case exhibits a bend resistance that is asymmetric in magnetic field as a consequence of snake states along the pn-interface, where the maximum is shifted away from zero magnetic field

    Spectroscopy of snake states using a graphene Hall bar

    Full text link
    An approach to observe snake states in a graphene Hall bar containing a pn-junction is proposed. The magnetic field dependence of the bend resistance in a ballistic graphene Hall bar structure containing a tilted pn-junction oscillates as a function of applied magnetic field. We show that each oscillation is due to a specific snake state that moves along the pn-interface. Furthermore depending on the value of the magnetic field and applied potential we can control the lead in which the electrons will end up and hence control the response of the system

    Veselago lensing in graphene with a p-n junction: classical versus quantum effects

    Full text link
    The feasibility of Veselago lensing in graphene with a p-n junction is investigated numerically for realistic injection leads. Two different set-ups with two narrow leads are considered with absorbing or reflecting side edges. This allows us to separately determine the influence of scattering on electron focusing for the edges and the p-n interface. Both semiclassical and tight-binding simulations show a distinctive peak in the transmission probability that is attributed to the Veselago lensing effect. We investigate the robustness of this peak on the width of the injector, the position of the p-n interface and different gate potential profiles. Furthermore, the influence of scattering by both short- and long-range impurities is considered.Comment: 10 pages, 7 figure

    Graphene Hall bar with an asymmetric pn-junction

    Full text link
    We investigated the magnetic field dependence of the Hall and the bend resistances in the ballistic regime for a single layer graphene Hall bar structure containing a pn-junction. When both regions are n-type the Hall resistance dominates and Hall type of plateaus are formed. These plateaus occur as a consequence of the restriction on the angle imposed by Snell's law allowing only electrons with a certain initial angles to transmit though the potential step. The size of the plateau and its position is determined by the position of the potential interface as well as the value of the applied potential. When the second region is p-type the bend resistance dominates which is asymmetric in field due to the presence of snake states. Changing the position of the pn-interface in the Hall bar strongly affects these states and therefore the bend resistance is also changed. Changing the applied potential we observe that the bend resistance exhibits a peak around the charge-neutrality point (CNP) which is independent of the position of the pn-interface, while the Hall resistance shows a sign reversal when the CNP is crossed, which is in very good agreement with a recent experiment [J. R. Williams et al., Phys. Rev. Lett. 107, 046602(2011)]

    Linearization of multichannel amplifiers with the injection of second harmonics into the amplifier and predistortion circuit

    Get PDF
    A linearization technique that uses the injection of the fundamental signal second harmonics together with the fundamental signals at the amplifier input has been extended in this paper by introducing the injection the second harmonics into nonlinear microwave amplifier and so-called predistortion circuit. Predistortion circuit produces the third-order intermodulation signals that are injected at the amplifier input together with the second harmonics making the linearization procedure more independent on the phase variation of the second harmonics. In addition, a considerably better improvement is attained for the power of fundamental signals close to 1-dB compression point by applying the linearization technique proposed in this paper in comparison to the linearization with the injection of the second harmonics merely in the nonlinear amplifier
    • …
    corecore